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An Introduction to Image Processing
and the Fourier Transform

J. Christian Russ, Analytical Vision, Inc.

Abstract: 
By now, whether they were aware of it or not, most people have had an opportunity to play with
Image Processing.  Photoshop is bundled with nigh everything, and programs such as NIH Image
are free for public use.  This paper discusses the fundamentals of image processing, filters, and
explains some of the uses of the 2-D Fourier Transform.

This  paper  is  intended as an introduction to
grayscale  image  processing,  for  people  who
are  moderately  mathematically  inclined.   No
great mathematical  background is  necessary,
no nasty double-integrals are shown.  Instead
a  conceptual  relationship  between  spatial
images (2-D arrays of pixels) and some ways of
manipulating them is drawn, with a nod to the
computational resources required.  
As  the  amount  of  mathematical  computing  power
increases  in  the  hands  of  users,  with  the  68882,  the
68040,  the  AT&T  3210,  and  the  PowerPC  601,
techniques  that  were  previously  too  computationally
painful or required cheap (and not terribly satisfying)
work-arounds are becoming feasible and common.
We will discuss convolution, the Fourier transform, and
other methods that require transcendental functions.

Matrix Operators
The process of  applying a square matrix to all  of  the
pixels in an image is called convolution.  The process
of convolution is to take a  kernel (or square matrix of
numbers – also called a filter or operator) and apply it
to each pixel and its neighbors in an image.  This is a
dot-product of the values in the kernel with the values
in the image in the following manner:

Kernel (J x J)
k1,1 k1,2 … k1,j
k2,1 k2,2 … k2,j •

| | \ |
kj,1 kj,2 … kj,j

Image to be filtered (N x M)
P1,1 P1,2 … …  … P1,m
P2,1 P2,2 …  …  … P2,m

| | \  |
| |  \ |

Pn,1 Pn,2 … … … Pn,m

To  calculate  a  new  pixel  Px,y the  following  equation
would be used:

New Px,y = Σ
h = 1

j

Σ
v = 1

j

k       * Ph,v (x - h -  j/2 - 1), (y - v -  j/2 - 1)

This process is graphically explained in the next section.
Unfortunately the typical values in the kernels are not
in the range 0..1, and some automatic methods must be
used to determine a divisor to yield a reasonable pixel
value,  e.g.  one  that  fits  in  a  byte.   The  best  rule-of-
thumb is that if the sum of the kernel values is zero then
the divisor should be the sum of the positive values in
the kernel,  and if  the sum is  non-zero then that sum
should be the divisor.   Also,  if  the sum of  the kernel
values is zero then 128 is added to the result, because
there  are  often  negative  values  returned  from
convolution.
One  of  the  important  concepts  here  is  that  the  new
value cannot be immediately replaced in the image but
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must either be placed into a new image, or buffered, so
that  the old  pixel  values can be used in calculations.
Typically j/2 lines need to be buffered.
Another term that will be used is spatial domain.  This
is another way of saying a 2-D array of pixels in a 
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Cartesian coordinate system (as opposed to the Fourier
domain, which is a 2-D array of amplitudes and phases -
to be defined later).
In the first few examples, a JxJ kernel will be shown in
the following manner to better illustrate the process of
convolution:

  1,1k   1,2k   1,jk

  2,1k

  j,1k   j,2k   j,jk

  2,2k   2,jk

…

…

…

| || \

Image Smoothing
One  of  the  simplest  and  most  useful  forms  of  image
processing is “Smoothing” or reducing the noise in an
image.  This is accomplished by averaging neighboring
pixels  together.   In  this  example,  a  pixel  is  averaged
with its three neighbors (beneath, right, and diagonally
to the right), and the result is placed into a new image.
This can be represented as a kernel that is 2x2.  We are
using four pixels in the average, and then dividing down
by the number of pixels to produce a new value.

•
26

25 29

33

1 1

1 1
(  1*25 + 1*29 
+ 1*26 + 1*33)/4

= 28.25

Not all values in the kernel or filter matrix have to be
the  same.   For  instance,  if  a  1  and  -1  were  used,  a
directional  derivative  could  be  computed  (first
derivative, in a specific direction), but this would yield a
number that might not fit into a byte: -255..255.
This  example  show  how  a  horizontal  directional
derivative (partial) can be computed from an image.  

•
26

25 29

33
1 -1 (  1*25 - 1*29)

= -4

3x3 Smooth operator
In  order  to  get  around  the  pixel  shifting  problem (a
result of averaging with neighbors on just two sides),
we  should  look  at  operators (yet  another  word  for
kernels) that have odd-dimensions.  Here is a common
3x3 operator that is optimized for computers that have
bit-shift instructions:

•

27

26

25 29 30

33

3532

33

1 2 1

2 4 2

1 2 1  (1*25+2*29+1*30
+2*26+4*33+2*33
+1*27+2*32+1*35)/16 

= 31.125

1+2+1+2+4+
2+1+2+1 = 16

Laplacian 3x3
A common edge-detector that does not shift position of
the “edgeness” is called the Laplacian.  It is essentially
a  second-derivative  (rather  than  two  orthogonal  first-
derivatives that we will see later in the Sobel).  This one
also has the advantages of being computer-optimized;
all of the multiplications and divisions are bit-shifts:

(-1*29 + 
 -1*26 + 
 -1*33 + 
 -1*27 + 
   4*33)/4

= 4.25

+4

-1

-1

-1

-1 •

27

26

25 29 30

33

3532

33

There are other kinds of operators or convolution filters
that are larger, but most of them have odd dimensions
to prevent  pixel-shifting problems that  are present  in
the 2x2.

Images in Fourier Space
This is intended as a qualitative description of “Fourier
Space”  and  the  spatial  domain.   The  detailed
mathematics may be found in any number of textbooks,
along with sample code.  Also, code from Motorola is
often available for most of their processors.
There  are  three  concepts  that  are  necessary  to
understand  Fourier  space.   The  first  is  frequency.
Frequency  is  the  inverse  of  wavelength  (we’re  using
sine  waves  to  build  images  –  long  waves  have  low
frequencies, cover lots of pixels, and represent gradual
variation of brightness, short waves have high 
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frequencies, take just a few pixels, and represent sharp
transitions).

Frequency

It  is  easier to understand the Fourier transform from
basic principles.  The first is frequency composition.  It
was discovered by von Helmholtz that any sound could
be reproduced by taking a number of tuning forks and
reproducing the component frequencies in that sound.
Look at an equalizer on a stereo; each band consists of
a range of pitches.
When a sound is played, some frequencies are present,
and  by  reproducing  those  frequencies  with  the  right
amplitude or  volume,  the  sound  is  re-created.   This
wave-composition (as each pitch is a sine-wave) is the
basis for most audio equipment we have today.  In the
case of images, amplitude is the amount of change from
gray (brightness 128) to the brightness that we see.  A
frequency with no amplitude (or  power) will not affect
the image.

Amplitude

Bright

Dark

The  Fourier  transform  takes  a  wave  or  sequence  of
information and identifies component frequencies, using
a set of sine-waves that are present in varying degrees,
however it takes more than just amplitude to specify a
sine-wave.  It also takes phase.  Phase in this context is
really an indicator of where that sine-wave starts.   It
doesn’t  matter  to  the  human ear,  because  we cannot
detect when the pitch started, but when this method is
applied to images it becomes important:

Phase

Now the difficult part.  We take this idea of phase and
amplitude  to  two  dimensions.   Instead  of  amplitude
representing  air-pressure,  as  it  does  with  sound,  it
represents  brightness.   High-frequencies  are  short,
sudden  changes  and  low-frequencies  are  long,  slow
changes in the image.  Phase is position, or where the
change takes place.  Let’s look at the following image:

Original

Scanned Image

This image has been scanned from an offset-print page.
Please note the half-tone screen in the image.  The half-
tone dots of the image will be our principle landmarks.
They are a repeating pattern at a specific angle.  They
will  show up  as  large amplitudes at  a  specific set  of
frequencies.

Fourier Power Spectrum 
The power-spectrum for an image is just the amplitude
information for each frequency.  The common method
for  displaying  frequencies  is  with  the  zero  frequency
(called DC) in the center and the highest frequencies at
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the outside.  Here we can see a number of spikes that
correspond to the halftones, and a diagonal line, 30° off
of  the  horizontal  that  corresponds  to  the  frequencies
that  it  takes  to  represent  the  minute  hand  in  the
original picture.
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-1/256-63/256 0/256 64/2561/256      
FFT Power Spectrum 

Filtering in Fourier space
The  first  convolution  filter  we  looked  at  was  for
smoothing.   Smoothing is  really a low-pass filter (low
frequencies  are  kept,  high  frequencies  are  thrown
away),  and  is  remarkably  similar  to  the  effect  of  a
camera out-of-focus.  Here we keep just the frequencies
that are lower than the half-tone dots:

Cut-off frequency =  
(Half Tone Screen) / Image Width

So if the half tone or screen is 35 dpi in the image (each
dot is a pixel) then there are 150 half-tone dots across
the image.   If  the image is  256 pixels  wide then the
frequency cut-off should be 35 / 256.  In this example,
all frequencies higher than that have their amplitudes
set to zero:

Center (lowest) Frequencies

and producing an image that looks like this:

Low-

Pass without Half-tone screen dots

There are a number of side-effects, in this case ringing,
which  are  caused  by  the  assumption  that  the  image
repeats both horizontally and vertically.  (That is to say,
the image repeats off the right edge, the bottom edge,
the top edge,  and the left  edge.)   There are ways to
reduce this effect, including zero-padding.

Smoothing in the Spatial Domain
The same filter as above, but performed in the spatial
domain with a convolution filter looks like this.  Note,
that  now  we  missed  some  processing  on  the  edges,
because there is no information past the edge and we
cannot compute the correct result for points near the
edge.
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Spatial

Domain - Gaussian (Low-Pass)

The kernel that was used is a Gaussian, with a standard
deviation (σ) of 1.0 pixel.  This means that 68% of the
weight lies within 1.0 pixels of the center.

G(x,y) = e
 x + y2 2

2πσ
- 2( )           

0 0 1  1  1  1 1 0 0
0 1 2  3  3  3 2 1 0
1 2 3  6  7  6 3 2 1
1 3 6  9 11  9 6 3 1
1 3 7 11 12 11 7 3 1
1 3 6  9 11  9 6 3 1
1 2 3  6  7  6 3 2 1
0 1 2  3  3  3 2 1 0
0 0 1  1  1  1 1 0 0

σ = 1.0, 9x9 Gaussian  smooth kernel

In order to perform this convolution, approximately 81
multiplies and 1 divide were performed for each pixel in
the  source  image.   This  can  be  improved,  if
multiplication is expensive, by using 81 look-up tables of

256 entries each.  The tables can be computed once at
the start of processing.  They can even be normalized so
that division can be accomplished by dropping a byte or
bit-shifting.  A 512 x 512 image with one byte per pixel
and  this  kernel  would  involve  about  21  million
multiplications, plus the occasional divide.
The  Fourier  method  of  convolution  using  this  same
kernel performs an FFT (Fast Fourier Transform) of the
kernel,  an  FFT  of  the  image  to  put  the  image  into
Fourier  space,  a  dot-product  (complex  multiply  in
Fourier-space)  and  then  an inverse  FFT  to  bring  the
image back into the spatial domain.
Depending  upon  the  implementation  of  the  FFT
function,  somewhere  around  13x13,  the  FFT  /
convolution / IFFT process becomes more efficient than
simple  convolution.   This  is  because  the  number  of
multiplies goes up with the number of elements in the
kernel,  which has to get much larger for successively
lower frequencies.  Conversely, the spatial convolution
is  significantly  more  efficient  for  high-frequency
processing.  The cut-off is approximately 9x9 with the
Fast Hartley (half the number of multiplies and half the
storage requirement), but Stanford has a patent on the
FHT.

Enhancement in Frequency Domain
A high-pass filter keeps mostly edges.  There are two
ways to accomplish this in frequency space.  The first is
to reduce the amplitude (without changing the phase) of
the  lower  frequencies,  or  conversely  to  increase  the
amplitude  of  the  high  frequencies.   If  you  have  ever
seen footage of the Ed Sullivan Show or other ancient
Black  and White  television  shows,  you probably  have
noticed a halo effect around people and objects.  This is
due  to  modern  processing  making  the  picture  look
better.   This  same  effect  is  demonstrated  in  the
following example.
The second method to enhance an image is to perform a
low-pass filter (where the low frequencies are kept) and
subtract it from the original image.  Since the Gaussian
is  a  low-pass  filter,  this  method  works  in  the  spatial
domain, too.
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High-

Pass

A  variation  of  this  technique  is  auto-focusing.   The
cameras  and  microscopes  that  autofocus  have  direct
control of a “Z” axis or focal position.  When an image is
in focus (and there are edges present in the image, as
opposed  to  blank  sky  or  a  black  lens  cap)  the  high-
frequencies  are  maximized.   That  is  to  say,  there  is
greater amplitude in the higher frequencies within the
image.  (The edges are sharper!)  Since people tend to
consider the center of the image the most interesting,
this method is applied with either several 1-D lines near
and through the center of the image, or a transform on
a small section of the center.
The  low-pass  image,  below,  does  not  contain  much
information about the image.  It  appears to be really
out-of-focus,  but  this  image,  when  added  to  the  one
above,  yields  the  original.   The  frequency  cut-off  for
these  two  images  was  approximately  1/10  of  a
wavelength (1/f * width = wave-length) of 26 pixels.

Low-

Pass

By  selecting  a  very-high  frequency  cut-off,   noise  or
other high-frequency artifacts can be isolated.  Unless
noise is a periodic function (60Hz noise from A/C) or
microwave oven or something like that,  it  has a very
high frequency.  A simple choke or low-pass filter, set to
a  fairly  high  frequency  can  remove all  sorts  of  stuff.
Here is an example of what is removed from this image
in the one to two pixel range.  This is a higher frequency
than the half-tone dots.  It also occupies a very large
portion of the frequency space image.
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Highest

Frequencies

Non-Linear Filters
We  have  seen  that  there  is  a  strong  relationship
between convolution filters and the Fourier transform.
These are called linear filters.  The next class of filters
are very powerful and are called non-linear filters.  That
is to say they cannot be done in Fourier space - there
are no Fourier equivalents.

Rank Filters
The first example is a median filter.  It is accomplished
by taking the 3x3 area around a pixel and sorting the
values that are present, deriving a new image from the
median  value  (3x3  = 9  values,  median  = 5th  value).
This  can  be  significantly  different  than  the  average
value for the area, and there are some more advanced
techniques  that  depend upon this  difference.   This  is
excellent for reducing noise, since a noise value is likely
to be either the top or bottom of the brightness range.
It does have the notable characteristic that edges (but
not corners) are left pretty much alone.  Objects that
are  not  noise,  but  are  smaller  than  3x3  can  be
obliterated.  For those familiar with PhotoShop, this is
called despeckle.

3x3 Median

A 5x5 median is the same as the 3x3, but now there are
25 values to sort and the 13th is kept.  A variation on
the 5x5 is called the 5x5 octagonal median.  This skips
the four farthest-away pixels, is a better approximation
of  a  circle,  and  therefore  is  less  sensitive  to  the
orientation of edges and objects in the image.  This can
obliterate  larger  objects;   any-thing  under  about  3
pixels can be wiped out entirely.  Notice that the half-
tone dots and thin lines on the letters are gone.

Neighborhood for  5x5 Octagonal Median
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5x5

Octagonal Median

By continually re-applying the median until there are no
changes in the image the image is reduced to a series of
regions  with  common  shades.   It  is  an  interesting
artistic effect and is called Posterization.

Posteri

zation

There are other  rank operators  besides the median.
These  include  min,  max,  and  range.   Rather  than
sorting, min will keep the brightest value within a 3x3
area,  and  max  will  keep  the  darkest.   The  major
problem  with  this  is  that  noise  is  most  likely  to  be
darker or lighter than the neighboring pixels.   Notice
the white spots in the numbers, below:

Min

(Brightest)

Max
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(Darkest)
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If  the  noise  is  reduced  in  the  image,  either  through
averaging  several  frames,  or  using  high-fidelity
equipment, then this yields better results.  The range is
the difference between the Darkest and Lightest pixels,
and an image can be made from the range.

Edge Detection - Sobel
An edge  is  a  transition  from one  brightness  level  to
another.  The “edgeness” or magnitude of the edge is
really  how steep  the  transition  is  or  how rapidly  the
numbers  change.   (For  those  following  the  Fourier
terminology,  the  steeper  the  edges,  the  higher  the
frequencies it takes to represent such an edge.  From a
calculus standpoint, the first derivative is higher on a
steep edge.)
Another category of non-linear operators includes edge-
detection.   We’ve  already seen the  Laplacian  (second
derivative)  filter,  but  it  has some notorious problems.
The first is that it is a wonderful noise amplifier.  If a
pixel  varies  by  a  little  bit  from  its  neighbors,  that
difference is multiplied by four.
The Sobel edge filter is one of the most interesting and
powerful.  It computes both the horizontal and vertical
partial derivatives of the edge.
Vert. kernel      Horiz. kernel

1 2 1 1 0 -1
0 0 0 2 0 -2
-1 -2 -1 1 0 -1

These directional derivatives (partials) are combined in
the equation:

Edge Magnitude = Sqrt (V2 + H2)
and a new image is generated.  Because there is a low-
pass component in these kernels (other kernels work, as
long  as  they  are  orthogonal  and  have  the  same
multipliers as each other) the edges are a bit wide.

Sobel

Edge Image – Edges are dark

The biggest problem with the Sobel is that a square-root
is  required  in  computation.   Common approximations
are to either add the partial derivatives together or to
take the maximum.  With faster processors, this is not
as big an issue.

Edge Detection - Kirsch
One of the filters that works around that problem is the
Kirsch edge- detector.  It applies eight kernels, with the
merit of multiplying each pixel  by -3 and by 5 (other
values can be used) and then the maximum of the eight
kernels is put into the new image.  This eliminates the
need for transcendental and produces similar results to
the Sobel.
Kirsch (max of 8 directional derivatives):

5 5 5 5 5 -3
-3 0 -3 5 0 -3
-3 -3 -3 -3 -3 -3

5 -3 -3 -3 -3 -3
5 0 -3 5 0 -3
5 -3 -3 5 5 -3
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-3 -3 -3 -3 -3 -3
-3 0 -3 -3 0 5
5 5 5 -3 5 5
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-3 -3 5 -3 5 5
-3 0 5 -3 0 5
-3 -3 5 -3 -3 -3

Kirsch

Edge Image – Edges are dark

Edge Detection - Frei & Chen 
Another approach toward edge detection is the Frei &
Chen (1977) filter.  It applies nine convolution kernels to
an  image  to  create  a  basis  function  (S)  for  how
organized  the  pixels  are,  but  then  uses  two  of  the
kernels (E) to measure how much of that organization is
an edge instead of a line or a corner, etc.  It is able to
detect fainter edges, and it yields thinner lines.
The following kernels constitute the basis functions for
the Frei & Chen filter:

1 1 1 -1 -√2 -1
b0= 1 1 1 b1= -3 0 5

1 1 1 1 √2 1

-1 0 1 0 -1 √2
b2= -√2 0 √2 b3= 1 0 -1

-1 0 1 -√2 1 0

√2 -1 0 0 1 0
b4= -1 0 1 b5= -1 0 1

0 1 -√2 0 -1 0

-1 0 1 1 -2 -1
b6= 0 0 0 b7= -2 4 -2

1 0 -1 1 -2 1

-2 1 -2
b8= 1 4 1

-2 1 -2

After  each  is  applied,  the  two  values  E  and  S  are
computed as:

S = (b0)2 + (b1)2 + (b2)2 +
 (b3)2 + (b4)2 + (b5)2 +
 (b6)2 + (b7)2 + (b8)2

E = (b1)2 + (b2)2

Edge Mag. = cos-1(1 - Sqrt(E / S))
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Frei &

Chen Edge Image – Edges are dark

Image enhancement
A common technique to edge enhance an image is to
average  an  edge  image  with  the  original.   With  the
Laplacian this is instead performed by using the kernel:

0 -1 0
-1 5 -1
0 -1 0

Notice the 5 in the center – this adds a fraction of the
original back into the edge image.
(Again, the Fourier equivalent, for linear filters, is to de-
emphasize but  not  eliminate the lower frequencies  in
the image.)

Conclusion
Image  processing  is  a  very  computer  intensive
application.  As newer processors come along, the need
for DSP’s  and array processors  (which can process a
whole line of  pixels at  once with real-time video)  are
reduced  and  the  more  powerful  techniques  can  be
placed into the hands of the casual user.
Color is a whole different ball game.
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