
1 An Introduction to Image Processing and the Fourier Transform 1

An Introduction to Image Processing
and the Fourier Transform

J. Christian Russ, Analytical Vision, Inc.

Abstract:
By now, whether they were aware of it or not, most people have had an opportunity to play with
Image Processing. Photoshop is bundled with nigh everything, and programs such as NIH Image
are free for public use. This paper discusses the fundamentals of image processing, filters, and
explains some of the uses of the 2-D Fourier Transform.

This paper is intended as an introduction to
grayscale image processing, for people who
are moderately mathematically inclined. No
great mathematical background is necessary,
no nasty double-integrals are shown. Instead
a conceptual relationship between spatial
images (2-D arrays of pixels) and some ways of
manipulating them is drawn, with a nod to the
computational resources required.
As the amount of mathematical computing power
increases in the hands of users, with the 68882, the
68040, the AT&T 3210, and the PowerPC 601,
techniques that were previously too computationally
painful or required cheap (and not terribly satisfying)
work-arounds are becoming feasible and common.
We will discuss convolution, the Fourier transform, and
other methods that require transcendental functions.

Matrix Operators
The process of applying a square matrix to all of the
pixels in an image is called convolution. The process
of convolution is to take a kernel (or square matrix of
numbers – also called a filter or operator) and apply it
to each pixel and its neighbors in an image. This is a
dot-product of the values in the kernel with the values
in the image in the following manner:

Kernel (J x J)
k1,1 k1,2 … k1,j
k2,1 k2,2 … k2,j •

| | \ |
kj,1 kj,2 … kj,j

Image to be filtered (N x M)
P1,1 P1,2 … … … P1,m
P2,1 P2,2 … … … P2,m

| | \ |
| | \ |

Pn,1 Pn,2 … … … Pn,m

To calculate a new pixel Px,y the following equation
would be used:

New Px,y = Σ
h = 1

j

Σ
v = 1

j

k * Ph,v (x - h - j/2 - 1), (y - v - j/2 - 1)

This process is graphically explained in the next section.
Unfortunately the typical values in the kernels are not
in the range 0..1, and some automatic methods must be
used to determine a divisor to yield a reasonable pixel
value, e.g. one that fits in a byte. The best rule-of-
thumb is that if the sum of the kernel values is zero then
the divisor should be the sum of the positive values in
the kernel, and if the sum is non-zero then that sum
should be the divisor. Also, if the sum of the kernel
values is zero then 128 is added to the result, because
there are often negative values returned from
convolution.
One of the important concepts here is that the new
value cannot be immediately replaced in the image but

An Introduction to Image Processing and the Fourier Transform 1

2 An Introduction to Image Processing and the Fourier Transform 2

must either be placed into a new image, or buffered, so
that the old pixel values can be used in calculations.
Typically j/2 lines need to be buffered.
Another term that will be used is spatial domain. This
is another way of saying a 2-D array of pixels in a

An Introduction to Image Processing and the Fourier Transform 2

3 An Introduction to Image Processing and the Fourier Transform 3

Cartesian coordinate system (as opposed to the Fourier
domain, which is a 2-D array of amplitudes and phases -
to be defined later).
In the first few examples, a JxJ kernel will be shown in
the following manner to better illustrate the process of
convolution:

 1,1k 1,2k 1,jk

 2,1k

 j,1k j,2k j,jk

 2,2k 2,jk

…

…

…

| || \

Image Smoothing
One of the simplest and most useful forms of image
processing is “Smoothing” or reducing the noise in an
image. This is accomplished by averaging neighboring
pixels together. In this example, a pixel is averaged
with its three neighbors (beneath, right, and diagonally
to the right), and the result is placed into a new image.
This can be represented as a kernel that is 2x2. We are
using four pixels in the average, and then dividing down
by the number of pixels to produce a new value.

•
26

25 29

33

1 1

1 1
(1*25 + 1*29
+ 1*26 + 1*33)/4

= 28.25

Not all values in the kernel or filter matrix have to be
the same. For instance, if a 1 and -1 were used, a
directional derivative could be computed (first
derivative, in a specific direction), but this would yield a
number that might not fit into a byte: -255..255.
This example show how a horizontal directional
derivative (partial) can be computed from an image.

•
26

25 29

33
1 -1 (1*25 - 1*29)

= -4

3x3 Smooth operator
In order to get around the pixel shifting problem (a
result of averaging with neighbors on just two sides),
we should look at operators (yet another word for
kernels) that have odd-dimensions. Here is a common
3x3 operator that is optimized for computers that have
bit-shift instructions:

•

27

26

25 29 30

33

3532

33

1 2 1

2 4 2

1 2 1 (1*25+2*29+1*30
+2*26+4*33+2*33
+1*27+2*32+1*35)/16

= 31.125

1+2+1+2+4+
2+1+2+1 = 16

Laplacian 3x3
A common edge-detector that does not shift position of
the “edgeness” is called the Laplacian. It is essentially
a second-derivative (rather than two orthogonal first-
derivatives that we will see later in the Sobel). This one
also has the advantages of being computer-optimized;
all of the multiplications and divisions are bit-shifts:

(-1*29 +
 -1*26 +
 -1*33 +
 -1*27 +
 4*33)/4

= 4.25

+4

-1

-1

-1

-1 •

27

26

25 29 30

33

3532

33

There are other kinds of operators or convolution filters
that are larger, but most of them have odd dimensions
to prevent pixel-shifting problems that are present in
the 2x2.

Images in Fourier Space
This is intended as a qualitative description of “Fourier
Space” and the spatial domain. The detailed
mathematics may be found in any number of textbooks,
along with sample code. Also, code from Motorola is
often available for most of their processors.
There are three concepts that are necessary to
understand Fourier space. The first is frequency.
Frequency is the inverse of wavelength (we’re using
sine waves to build images – long waves have low
frequencies, cover lots of pixels, and represent gradual
variation of brightness, short waves have high

An Introduction to Image Processing and the Fourier Transform 3

4 An Introduction to Image Processing and the Fourier Transform 4

frequencies, take just a few pixels, and represent sharp
transitions).

Frequency

It is easier to understand the Fourier transform from
basic principles. The first is frequency composition. It
was discovered by von Helmholtz that any sound could
be reproduced by taking a number of tuning forks and
reproducing the component frequencies in that sound.
Look at an equalizer on a stereo; each band consists of
a range of pitches.
When a sound is played, some frequencies are present,
and by reproducing those frequencies with the right
amplitude or volume, the sound is re-created. This
wave-composition (as each pitch is a sine-wave) is the
basis for most audio equipment we have today. In the
case of images, amplitude is the amount of change from
gray (brightness 128) to the brightness that we see. A
frequency with no amplitude (or power) will not affect
the image.

Amplitude

Bright

Dark

The Fourier transform takes a wave or sequence of
information and identifies component frequencies, using
a set of sine-waves that are present in varying degrees,
however it takes more than just amplitude to specify a
sine-wave. It also takes phase. Phase in this context is
really an indicator of where that sine-wave starts. It
doesn’t matter to the human ear, because we cannot
detect when the pitch started, but when this method is
applied to images it becomes important:

Phase

Now the difficult part. We take this idea of phase and
amplitude to two dimensions. Instead of amplitude
representing air-pressure, as it does with sound, it
represents brightness. High-frequencies are short,
sudden changes and low-frequencies are long, slow
changes in the image. Phase is position, or where the
change takes place. Let’s look at the following image:

Original

Scanned Image

This image has been scanned from an offset-print page.
Please note the half-tone screen in the image. The half-
tone dots of the image will be our principle landmarks.
They are a repeating pattern at a specific angle. They
will show up as large amplitudes at a specific set of
frequencies.

Fourier Power Spectrum
The power-spectrum for an image is just the amplitude
information for each frequency. The common method
for displaying frequencies is with the zero frequency
(called DC) in the center and the highest frequencies at

An Introduction to Image Processing and the Fourier Transform 4

5 An Introduction to Image Processing and the Fourier Transform 5

the outside. Here we can see a number of spikes that
correspond to the halftones, and a diagonal line, 30° off
of the horizontal that corresponds to the frequencies
that it takes to represent the minute hand in the
original picture.

An Introduction to Image Processing and the Fourier Transform 5

6 An Introduction to Image Processing and the Fourier Transform 6

-1/256-63/256 0/256 64/2561/256
FFT Power Spectrum

Filtering in Fourier space
The first convolution filter we looked at was for
smoothing. Smoothing is really a low-pass filter (low
frequencies are kept, high frequencies are thrown
away), and is remarkably similar to the effect of a
camera out-of-focus. Here we keep just the frequencies
that are lower than the half-tone dots:

Cut-off frequency =
(Half Tone Screen) / Image Width

So if the half tone or screen is 35 dpi in the image (each
dot is a pixel) then there are 150 half-tone dots across
the image. If the image is 256 pixels wide then the
frequency cut-off should be 35 / 256. In this example,
all frequencies higher than that have their amplitudes
set to zero:

Center (lowest) Frequencies

and producing an image that looks like this:

Low-

Pass without Half-tone screen dots

There are a number of side-effects, in this case ringing,
which are caused by the assumption that the image
repeats both horizontally and vertically. (That is to say,
the image repeats off the right edge, the bottom edge,
the top edge, and the left edge.) There are ways to
reduce this effect, including zero-padding.

Smoothing in the Spatial Domain
The same filter as above, but performed in the spatial
domain with a convolution filter looks like this. Note,
that now we missed some processing on the edges,
because there is no information past the edge and we
cannot compute the correct result for points near the
edge.

An Introduction to Image Processing and the Fourier Transform 6

7 An Introduction to Image Processing and the Fourier Transform 7

Spatial

Domain - Gaussian (Low-Pass)

The kernel that was used is a Gaussian, with a standard
deviation (σ) of 1.0 pixel. This means that 68% of the
weight lies within 1.0 pixels of the center.

G(x,y) = e
 x + y2 2

2πσ
- 2()

0 0 1 1 1 1 1 0 0
0 1 2 3 3 3 2 1 0
1 2 3 6 7 6 3 2 1
1 3 6 9 11 9 6 3 1
1 3 7 11 12 11 7 3 1
1 3 6 9 11 9 6 3 1
1 2 3 6 7 6 3 2 1
0 1 2 3 3 3 2 1 0
0 0 1 1 1 1 1 0 0

σ = 1.0, 9x9 Gaussian smooth kernel

In order to perform this convolution, approximately 81
multiplies and 1 divide were performed for each pixel in
the source image. This can be improved, if
multiplication is expensive, by using 81 look-up tables of

256 entries each. The tables can be computed once at
the start of processing. They can even be normalized so
that division can be accomplished by dropping a byte or
bit-shifting. A 512 x 512 image with one byte per pixel
and this kernel would involve about 21 million
multiplications, plus the occasional divide.
The Fourier method of convolution using this same
kernel performs an FFT (Fast Fourier Transform) of the
kernel, an FFT of the image to put the image into
Fourier space, a dot-product (complex multiply in
Fourier-space) and then an inverse FFT to bring the
image back into the spatial domain.
Depending upon the implementation of the FFT
function, somewhere around 13x13, the FFT /
convolution / IFFT process becomes more efficient than
simple convolution. This is because the number of
multiplies goes up with the number of elements in the
kernel, which has to get much larger for successively
lower frequencies. Conversely, the spatial convolution
is significantly more efficient for high-frequency
processing. The cut-off is approximately 9x9 with the
Fast Hartley (half the number of multiplies and half the
storage requirement), but Stanford has a patent on the
FHT.

Enhancement in Frequency Domain
A high-pass filter keeps mostly edges. There are two
ways to accomplish this in frequency space. The first is
to reduce the amplitude (without changing the phase) of
the lower frequencies, or conversely to increase the
amplitude of the high frequencies. If you have ever
seen footage of the Ed Sullivan Show or other ancient
Black and White television shows, you probably have
noticed a halo effect around people and objects. This is
due to modern processing making the picture look
better. This same effect is demonstrated in the
following example.
The second method to enhance an image is to perform a
low-pass filter (where the low frequencies are kept) and
subtract it from the original image. Since the Gaussian
is a low-pass filter, this method works in the spatial
domain, too.

An Introduction to Image Processing and the Fourier Transform 7

8 An Introduction to Image Processing and the Fourier Transform 8

High-

Pass

A variation of this technique is auto-focusing. The
cameras and microscopes that autofocus have direct
control of a “Z” axis or focal position. When an image is
in focus (and there are edges present in the image, as
opposed to blank sky or a black lens cap) the high-
frequencies are maximized. That is to say, there is
greater amplitude in the higher frequencies within the
image. (The edges are sharper!) Since people tend to
consider the center of the image the most interesting,
this method is applied with either several 1-D lines near
and through the center of the image, or a transform on
a small section of the center.
The low-pass image, below, does not contain much
information about the image. It appears to be really
out-of-focus, but this image, when added to the one
above, yields the original. The frequency cut-off for
these two images was approximately 1/10 of a
wavelength (1/f * width = wave-length) of 26 pixels.

Low-

Pass

By selecting a very-high frequency cut-off, noise or
other high-frequency artifacts can be isolated. Unless
noise is a periodic function (60Hz noise from A/C) or
microwave oven or something like that, it has a very
high frequency. A simple choke or low-pass filter, set to
a fairly high frequency can remove all sorts of stuff.
Here is an example of what is removed from this image
in the one to two pixel range. This is a higher frequency
than the half-tone dots. It also occupies a very large
portion of the frequency space image.

An Introduction to Image Processing and the Fourier Transform 8

9 An Introduction to Image Processing and the Fourier Transform 9

Highest

Frequencies

Non-Linear Filters
We have seen that there is a strong relationship
between convolution filters and the Fourier transform.
These are called linear filters. The next class of filters
are very powerful and are called non-linear filters. That
is to say they cannot be done in Fourier space - there
are no Fourier equivalents.

Rank Filters
The first example is a median filter. It is accomplished
by taking the 3x3 area around a pixel and sorting the
values that are present, deriving a new image from the
median value (3x3 = 9 values, median = 5th value).
This can be significantly different than the average
value for the area, and there are some more advanced
techniques that depend upon this difference. This is
excellent for reducing noise, since a noise value is likely
to be either the top or bottom of the brightness range.
It does have the notable characteristic that edges (but
not corners) are left pretty much alone. Objects that
are not noise, but are smaller than 3x3 can be
obliterated. For those familiar with PhotoShop, this is
called despeckle.

3x3 Median

A 5x5 median is the same as the 3x3, but now there are
25 values to sort and the 13th is kept. A variation on
the 5x5 is called the 5x5 octagonal median. This skips
the four farthest-away pixels, is a better approximation
of a circle, and therefore is less sensitive to the
orientation of edges and objects in the image. This can
obliterate larger objects; any-thing under about 3
pixels can be wiped out entirely. Notice that the half-
tone dots and thin lines on the letters are gone.

Neighborhood for 5x5 Octagonal Median

An Introduction to Image Processing and the Fourier Transform 9

10 An Introduction to Image Processing and the Fourier Transform 10

5x5

Octagonal Median

By continually re-applying the median until there are no
changes in the image the image is reduced to a series of
regions with common shades. It is an interesting
artistic effect and is called Posterization.

Posteri

zation

There are other rank operators besides the median.
These include min, max, and range. Rather than
sorting, min will keep the brightest value within a 3x3
area, and max will keep the darkest. The major
problem with this is that noise is most likely to be
darker or lighter than the neighboring pixels. Notice
the white spots in the numbers, below:

Min

(Brightest)

Max

An Introduction to Image Processing and the Fourier Transform 10

11 An Introduction to Image Processing and the Fourier Transform 11

(Darkest)

An Introduction to Image Processing and the Fourier Transform 11

12 An Introduction to Image Processing and the Fourier Transform 12

If the noise is reduced in the image, either through
averaging several frames, or using high-fidelity
equipment, then this yields better results. The range is
the difference between the Darkest and Lightest pixels,
and an image can be made from the range.

Edge Detection - Sobel
An edge is a transition from one brightness level to
another. The “edgeness” or magnitude of the edge is
really how steep the transition is or how rapidly the
numbers change. (For those following the Fourier
terminology, the steeper the edges, the higher the
frequencies it takes to represent such an edge. From a
calculus standpoint, the first derivative is higher on a
steep edge.)
Another category of non-linear operators includes edge-
detection. We’ve already seen the Laplacian (second
derivative) filter, but it has some notorious problems.
The first is that it is a wonderful noise amplifier. If a
pixel varies by a little bit from its neighbors, that
difference is multiplied by four.
The Sobel edge filter is one of the most interesting and
powerful. It computes both the horizontal and vertical
partial derivatives of the edge.
Vert. kernel Horiz. kernel

1 2 1 1 0 -1
0 0 0 2 0 -2
-1 -2 -1 1 0 -1

These directional derivatives (partials) are combined in
the equation:

Edge Magnitude = Sqrt (V2 + H2)
and a new image is generated. Because there is a low-
pass component in these kernels (other kernels work, as
long as they are orthogonal and have the same
multipliers as each other) the edges are a bit wide.

Sobel

Edge Image – Edges are dark

The biggest problem with the Sobel is that a square-root
is required in computation. Common approximations
are to either add the partial derivatives together or to
take the maximum. With faster processors, this is not
as big an issue.

Edge Detection - Kirsch
One of the filters that works around that problem is the
Kirsch edge- detector. It applies eight kernels, with the
merit of multiplying each pixel by -3 and by 5 (other
values can be used) and then the maximum of the eight
kernels is put into the new image. This eliminates the
need for transcendental and produces similar results to
the Sobel.
Kirsch (max of 8 directional derivatives):

5 5 5 5 5 -3
-3 0 -3 5 0 -3
-3 -3 -3 -3 -3 -3

5 -3 -3 -3 -3 -3
5 0 -3 5 0 -3
5 -3 -3 5 5 -3

An Introduction to Image Processing and the Fourier Transform 12

13 An Introduction to Image Processing and the Fourier Transform 13

-3 -3 -3 -3 -3 -3
-3 0 -3 -3 0 5
5 5 5 -3 5 5

An Introduction to Image Processing and the Fourier Transform 13

14 An Introduction to Image Processing and the Fourier Transform 14

-3 -3 5 -3 5 5
-3 0 5 -3 0 5
-3 -3 5 -3 -3 -3

Kirsch

Edge Image – Edges are dark

Edge Detection - Frei & Chen
Another approach toward edge detection is the Frei &
Chen (1977) filter. It applies nine convolution kernels to
an image to create a basis function (S) for how
organized the pixels are, but then uses two of the
kernels (E) to measure how much of that organization is
an edge instead of a line or a corner, etc. It is able to
detect fainter edges, and it yields thinner lines.
The following kernels constitute the basis functions for
the Frei & Chen filter:

1 1 1 -1 -√2 -1
b0= 1 1 1 b1= -3 0 5

1 1 1 1 √2 1

-1 0 1 0 -1 √2
b2= -√2 0 √2 b3= 1 0 -1

-1 0 1 -√2 1 0

√2 -1 0 0 1 0
b4= -1 0 1 b5= -1 0 1

0 1 -√2 0 -1 0

-1 0 1 1 -2 -1
b6= 0 0 0 b7= -2 4 -2

1 0 -1 1 -2 1

-2 1 -2
b8= 1 4 1

-2 1 -2

After each is applied, the two values E and S are
computed as:

S = (b0)2 + (b1)2 + (b2)2 +
 (b3)2 + (b4)2 + (b5)2 +
 (b6)2 + (b7)2 + (b8)2

E = (b1)2 + (b2)2

Edge Mag. = cos-1(1 - Sqrt(E / S))

An Introduction to Image Processing and the Fourier Transform 14

15 An Introduction to Image Processing and the Fourier Transform 15

Frei &

Chen Edge Image – Edges are dark

Image enhancement
A common technique to edge enhance an image is to
average an edge image with the original. With the
Laplacian this is instead performed by using the kernel:

0 -1 0
-1 5 -1
0 -1 0

Notice the 5 in the center – this adds a fraction of the
original back into the edge image.
(Again, the Fourier equivalent, for linear filters, is to de-
emphasize but not eliminate the lower frequencies in
the image.)

Conclusion
Image processing is a very computer intensive
application. As newer processors come along, the need
for DSP’s and array processors (which can process a
whole line of pixels at once with real-time video) are
reduced and the more powerful techniques can be
placed into the hands of the casual user.
Color is a whole different ball game.

An Introduction to Image Processing and the Fourier Transform 15

16 An Introduction to Image Processing and the Fourier Transform 16

References
Ballard, D. H. and C. M. Brown (1982) Computer Vision,

Prentice-Hall, Englewood Cliffs, NJ.
Frei, W. and C. C. Chen. (1977) Fast boundary

detection: a generalization and a new algorithm..
IEEE Trans. Computers C-26: 988-998.

Marr, David (1982) Vision, W. H. Freeman, San

Francisco, CA.
Reeves, A. A. Optimized Fast Hartley Transform with

Applications in Image Processing Thesis, Dartmouth
University, March 1990.

Rosenfeld, A. and A. C. Kak (1982) Digital Picture
Processing vol 1 & 2, Academic Press, New York,
NY.

Russ, John C. (1992) The Image Processing Handbook,
CRC Press, Boca Raton, FL.

An Introduction to Image Processing and the Fourier Transform 16

